Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach
نویسندگان
چکیده
A computer-aided detection (CAD) system is helpful for radiologists to detect pulmonary nodules at an early stage. In this paper, we propose a novel pulmonary nodule detection method based on hierarchical block classification. The proposed CAD system consists of three steps. In the first step, input computed tomography images are split into three-dimensional block images, and we apply entropy analysis on the block images to select informative blocks. In the second step, the selected block images are segmented and adjusted for detecting nodule candidates. In the last step, we classify the nodule candidate images into nodules and non-nodules. We extract feature vectors of the objects in the selected blocks. Lastly, the support vector machine is applied to classify the extracted feature vectors. Performance of the proposed system is evaluated on the Lung Image Database Consortium database. The proposed method has reduced the false positives in the nodule candidates significantly. It achieved 95.28% sensitivity with only 2.27 false positives per scan.
منابع مشابه
Automated Pulmonary Nodule Detection System in Computed Tomography Images: A Hierarchical Block Classification Approach
A computer-aided detection (CAD) system is helpful for radiologists to detect pulmonary nodules at an early stage. In this paper, we propose a novel pulmonary nodule detection method based on hierarchical block classification. The proposed CAD system consists of three steps. In the first step, input computed tomography images are split into threedimensional block images, and we apply entropy an...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملطراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندولهای ریوی در تصاویر سیتی اسکن
Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...
متن کاملGenetic programming-based feature transform and classification for the automatic detection of pulmonary nodules on computed tomography images
An effective automated pulmonary nodule detection system can assist radiologists in detecting lung abnormalities at an early stage. In this paper, we propose a novel pulmonary nodule detection system based on a genetic programming (GP)-based classifier. The proposed system consists of three steps. In the first step, the lung volume is segmented using thresholding and 3D-connected component labe...
متن کاملAutomated approach to measure pulmonary nodule volume based on radius and CT number
Determining the change in the pulmonary nodule size is a critical measurement for cancer diagnosis and therapy evaluation. In this study, an image-processing method that quantifies the nodule volume change based on computed tomography (CT) images is proposed. The proposed method consists of the following four steps: CT image interpolation, pulmonary region segmentation, nodule extraction, and n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013